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Abstract- Architecting networked embedded systems following a service-based paradigm improves the flexibility in software design 
and development. Services can be connected and composed to provide more complex functionality in the form of a service graph or 
application. Service composition must be done according to two different goals. On the one hand, service interfaces must be 
compatible, i.e., the provided interface of a service must match the required interface of the connecting one. On the other hand, 
composition criteria must meet application level requirements or QoS constrains. This paper provides an interface view of services 
highlighting the way in which they expose their QoS requirements in their interfaces. Based on this, it is explored how application 
level QoS requirements influence the specific selection of particular services. The paper identifies a bi-dimensional model of the QoS 
properties of services that are related to (1) the application functionality and (2) the execution requirements or computational 
resources needed from the platform. The paper provides a practical implementation of this QoS model in the iLAND project. iLAND 
middleware supports the dynamic reconfiguration of real-time service-based applications that specify their QoS requirements in this 
way. The paper validates the proposed QoS model with a specific use case. 

 

I. INTRODUCTION 

As technology improves at a growing pace, new possibilities emerge that augment the functionality offered to users. 
However, the price to be paid is on the side of the software platforms. Software increases its complexity to support both: (1)  
the high degree of functionality expected by the current user and (2) the complexity of the modern hardware platforms, being 
their required cross-compatibility integrated in the software layers. At the level of hardware, networked embedded systems 
(NES) are becoming a cloud of hundreds, and even thousands, of heterogeneous nodes connected by means of heterogeneous 
networks as well; they are now used in various domains such as cloud or grid [32]. As a consequence, software platforms are 
transferred the responsibility of bridging the gap between such a deployment complexity and the user applications.  

New programming paradigms and development possibilities appeared over the last decades that allow creating complex 
applications with a higher degree of decoupling. However, fitting the enabling run-times to some hardware characteristics is 
not an easy job, especially if the system under development has limitations in terms of computational capacity and real-time or 
QoS requirements.  Therefore, complex software paradigms have to be lightened to be applied to heavily resource constrained 
hardware as sensor motes; and this is a very challenging problem. Moreover, QoS requirements have to be expressed in an 
efficient way inside selected software paradigms so that specific support for the different execution platforms can be inferred. 

In this context, the service-oriented  architecture (SOAs) paradigm presents itself as a design and development model of 
high interest for two main reasons: (1) it decomposes system functionality into functional units allowing to implement 
decoupled systems, and (2) it defines a simple and flexible interaction model based on message exchange. Services are self 
contained functional pieces with well-defined interfaces that contain their functional and non-functional specifications. 
Interfaces are of two types: provided to and required from other services. By appropriate composition of services, groups of 
services that provide extended functionality can be created, and these are named applications. Preserving the provided and 
required interfaces, replacement of services is possible, and this is the basis for application  reconfiguration.  

NES have different levels of  temporal requirements, i.e, they can be hard or soft real-time. In soft real-time NES, the 
concept of QoS-based execution applies referring to trading off the assigned computational resources for the quality of the 
delivered output. Real-time NES have to preserve their temporal properties both during normal operation and also in the event 
of a reconfiguration or a transition to a different mode of operation.  

The execution platform must provide some additional logic to guarantee predictable behavior. This logic usually comes in 
the form of an additional software layer/module/component. In the iLAND approach, this logic is integrated in the middleware 

that is a real-time communications middleware and a reconfiguration arbiter that manages and coordinates the transition of 
applications from one configuration to another. For arbitration of service execution, the middleware needs information about 
the characteristics of the running services and applications specially their resource requirements. Applications and services are 
modeled containing a set of parameters that capture the set of properties that are needed in order to define their behavior and 
requirements; this way, the middleware can manage their execution accordingly, meeting their execution needs. In this paper, 
we refer to these parameters as the QoS properties. It is, then, needed to efficiently identify and characterize the QoS properties 
of applications and services. 

In NES, research work has mainly focused on the generalities of QoS characterization with the main focus on the non-
functional properties related to the requirements for computational resources; the majority of approaches have not dealt with 
the separation of application semantics related to the specific data they process from the pure computational requirements. In a 
previous work [25], the authors described an initial QoS characterization for services and provided a component model based 
on a simple template for iLAND services to have a homogeneous implementation. Such a component model has been used in 
the context of iLAND project [26][17] aimed at developing a middleware architecture for time-deterministic composition and 
reconfiguration of service-based applications. For achieving real-time reconfiguration of service-based applications, there are 
some important questions to be addressed. First, the reconfiguration model of service-based applications must be settled, as 
well as the service characterization and definition. Secondly, algorithms for composition of services must be developed that 
can be executed in a time-deterministic way. Moreover, the middleware plays a key role in this scene, since it will coordinate 
the execution of the applications/services and will coordinate their composition and reconfiguration. Eventually, real-time (or 
at least, quality of service –QoS) execution support and resource management schemes [7][8][6][5] should be offered by the 
operating system and the network. The current paper does not focus on the middleware architecture and its specific algorithms 
for enabling service composition and reconfiguration; these have already been addressed in previous contributions 
[27][28][29]. Instead, authors enhance the initial work on the characterization of services with QoS parameters used in iLAND 
[25] with the contributions of the project for modeling of the SOA-based applications and the identification of a 
comprehensive characterization of the QoS properties of services. The paper establishes the connections between the QoS 
properties of applications, and that of services. Moreover, it also defines the types of service graphs that the iLAND 
middleware manages to represent applications and to derive new application. QoS properties are developed in two dimensions: 
those related to specific data nature of applications and those related to the physical resources.  

In section 2, this paper presents the related and previous work on characterization of QoS properties of real-time NES in 
software oriented environments. In section 3, the service-based model for QoS-sensitive applications is presented together with 
the graph types that model the structure of applications; this section also contains the description of the internal structure of 
services and applications. Section 4 presents the bi-dimensional QoS characterization details and it puts in relation the 
properties of both applications and services. Section 5 presents the validation of the  concepts and the implications of this 
characterization in the composition of services on an example application (use case) setting. Section 6 concludes the paper. 

 
 

II. RELATED WORK 

The originator of most of QoS theory mainly for probabilistic packet transmission has been the networking area. In it, QoS 
properties are directly mapped into packet tagging or network reservation as DiffServ[30] and IntServ [31][31], respectively. 
Other network-related work has been mostly carried out over these ideas. 

Modeling the QoS properties of software systems has been mainly addressed from the resource management and component 
model side. Proof of this have been the different profiles defined by organizations as OMG on the definition of resource 
management related properties of systems.  Perhaps the most influencing work on QoS characterization have been the OMG 
standards for UML[1] and its modeling of QoS and Fault Tolerance [3] and the profile for schedulability, performance and 
time (UML SPT) , and, more recently MARTE with numerous contributions and extensions for different domains such as 
[35][36]; they are oriented to the construction of models that can be cross-checked for assessing non-functional properties 
facilitating communication of design ideas at development time. Based on these works, component technology work has also 
been proposed for extending complex CORBA-based component models[20][21][22]. 

Besides this activity on standardization, different scientific contributions have provided architectures for resource 
management including a comprehensive characterization of QoS properties related to real-time applications and real-time tasks 
for embedded systems. One of the main approaches in this direction was the HOLA-QoS architecture [4] that included a set of 
protocols for mode changing [5], dynamic priority assignment [6] (recently extended for dual priority bands[7] and mobile 
devices [10]), and other contributions for specific application domains such as ambient intelligence [8] . These ideas were also 
later mapped to the services paradigm precisely for the Jini based environments as CoSeRT [9]. Initial distribution models 
being designed also as [34]. 



QoS modeling for n-dimensions was already explored by [24] where a fairly comprehensive characterization of QoS 
properties was made but still with many limitations due to its purely theoretical perspective that lacked any application 
semantics; moreover, the final goal of composition was also not the driving force. Also, previous contributions on component 
based systems as [20][21][22] proposed efficient ways to integrate QoS support in actual software execution frameworks. 
More recently, QoS properties have also been combined with real-time replacement models to support dynamic real-time 
systems [23]. This is especially beneficial for domains like real-time media processing and rendering [16][15] developed with 
the aid of middleware such as in [11][13][14][17] or media lab infrastructures [18]. Also, mobile operating systems can be 
potentially benefited from improved resource management [10]. 

The SOA community has also addressed the characterization of QoS properties of services and applications. However, they 
have addressed almost exclusively web services, and these are a specific class of services that do not have real-time concerns. 
Therefore, work in that area has focused at cross-checking and composition of web services based on their functional 
descriptions in the form of ontologies. A few approaches to composition algorithms specifically for real-time systems has 
appeared; the initial approach for distributed real-time systems was presented in [9] as the germ of this idea. 

The work currently presented in this paper focuses at a pragmatic service characterization for QoS properties to enable the 
development of a system based on services that can be managed by the middleware; the middleware is capable of adjusting to 
the needs of the environment (environment triggers, user requests, and even internal monitoring decision as resource 
usage/availability needs, etc.). This characterization is used in the context of iLAND project. An initial approach to this was 
presented by the authors in [25] where the objective was to describe a component model for homogeneous service 
implementation. The current work extends it significantly by defining the possible application graph structures, and by 
enhancing the characterization and modeling of services and adding the description for application-level QoS; moreover, the 
relation among both application and service QoS properties is also presented. Also, implications on the composition logic is 
added and its relation to the composition logic of the middleware is indicated.  

 

III. SERVICE-ORIENTED SYSTEM MODEL 

Service entities are the building block of service oriented architectures (SOA). A service is a piece of functionality that 
receives and sends messages in a remote or centralized environment communicating with other services via message 
exchanges. Service oriented computing allows building distributed applications in a decoupled way where services reside in 
remote nodes in the network and communicate via messages or events. In our approach, a service manages a data channel as 
shown in figure 1.  It receives data through some input interface, and it processes the data generating a result that is delivered 
to other services through its output interface. 

 

 
Fig.1. Data channel flowing through services. Services process input data 
(messages) and generate output data (messages) 

 
It is possible to build extended functionality (applications) by connecting services. Service-based applications are a set of 

connected services in the form of a graph.  An application is a graph-based structure where the nodes are the services and the 
connecting lines or arrows are the messages exchanged between them. Figure 2 shows the scheme of this idea. 

 

 

Fig.2. Service-based application has a graph structure 
 
In the proposed model, a service is a self contained execution unit that is mainly characterized by the functionality it offers. 

Such functionality is its provided interface that integrates the set of operations and data that the service can execute. In the 
same way, a service has a required interface with the set of operations and data that it can take as input. Therefore, a service 
implementation is a particular version of a specific service. The set of all services of a system is given. Following, the set of all 
services in the system, S, is defined as S = {si; i = 1,..,n} where n is the number of services in the system. A specific 
application aj is a subset of S, in the form aj⊆S.  

A specific service si is realised or implemented by one or more service implementations that are the actual running entities. 
Therefore a specific service si has a number of service implementations, si,l, in the form {si,l; l = 1,..,m} . The set of all service 
implementations in the system is SI = {si,l; i = 1,..,n;l=1,...m } where n is the number of services in the system and m is the 
maximum number of service implementations per service. The number of service implementations per service can vary 
between different services. The service implementations of a single service are called companions. 

As a consequence, a running application is a collection of service implementations. In a similar way, an application actually 
contains only service implementations. In this model, a system is described by three types of graphs are shown below: 

 
• Application graph (AGi) of application i is a graph structure that contains only services and showing the relations among 

them. Therefore, it reflects only the functionality, and it is the static view of a given application. 
 
AGi = { S, R, Q } where Si is the set of services of application i; R is the set of relations (arrows) between nodes and 
contains elements of type Sj → Sk where service Sj is connected to Sk in the graph; Q is the set of quality of service 
parameters (related to the specific application data processing needs and its computational resources requirements that is 
detailed in section IV. 
 

• Expanded graph (XGi) is derived from substituting each service in the AGi by its set of service implementations. XGi 
shows the running entities of an application. This is the graph to search through by the composition algorithm. 

 
XGi = { SIi, R', Q } where SIi is a set of service implementations of application i  (SIi = {si,l; i = 1,..,n; l = 1,..,m}); R' is the 
set of relations (arrows) between nodes/service implementations and contains elements of type Sj,x → Sl,y where service 
implementation Sj,x is connected to Sl,y

  in the graph. This relation implies that Sj,x  sends messages to Sl,y
   and that the 

provided interface of  Sj,x  is compatible with the required interface of Sl,y. Q is the same set of quality of service 
parameters of its application graph. 

 
• Execution graph (EGi) is the application to be executed therefore including only the active service implementations. 

 
EGi = { SIi, R'', Q } where SIi is a set of service implementations of application i  and only the ones that have been selected 
by the composition logic; in the same way,  R''  and Q have the same structure as for the XGa. R'' is a subset of the 
relations contained in R': R''⊆ R'. 

 
 Below, an exemplification of the graph structures that model a service-based application in the iLAND approach is 

provided. Initially, the set of services of a given application  have to be provided in the form of an application graph, AG. 
Figure 3 presents an application graph made of three services. 

 

 

Fig.3. System represented by its application graph (AG) 
 
Figure 4 presents the expanded service graph resulting from the substitution of each service from the AG by its set of service 

implementations. In this case, service s2 has three implementations (or companions) contained in the set {s2,1, s2,2, s2,3}.  

 
Fig. 4. Expanded application-graph where service s2 has three companions 

 
Therefore, the expanded application graph shows the different possibilities for deploying a real application. At the end, a 

selection of service implementations will have to be performed to obtain the actual execution graph as shown in figure 5. In 
this case, s2,3 have been selected for s2. 

 



 

 

Fig. 5. Execution graph; the composition algorithm has selected s2,2 to 
execute in representation of service s2 

 
SOA based systems adjust naturally to the software reconfiguration model of iLAND. Application reconfiguration is 

achieved by replacing at least one current service implementations. Events that trigger reconfigurations can be broadly 
classified in two broad groups: 
• User action; a request may be issued for either a change of a functionality of an application or a change in the output 

quality delivered by some application which requires a different companion to achieve it. 
• Internal system decision detected by the internal execution monitoring of the system itself. For example, the system can 

detect if the processor load is very high and load balancing mechanisms need to be launched to preserve the level of 
resource assignment and, therefore, the application execution quality. 
 

The above triggers lead to two fundamental types of reconfiguration: 
• Functional; a service has to be replaced by a different service or void, i.e, simply stopped. A transition from figure 5 to 6 

is a functional reconfiguration since s2,2 is stopped. 
• Internal, a service implementation is replaced by another companion. 

 
 

 
Fig 6. Functional reconfiguration; taking figure 5 as starting point, service s2,2 is removed 

 
 

 

 

Fig. 7. Internal reconfiguration; taking figure 5 as starting point, the application replaces 
s2,2 of figure 5 by a companion  

 
 

IV. BI-DIMENSIONAL CHARACTERIZATION OF QOS PROPERTIES IN ILAND 

 
A comprehensive characterization of SOAs has been done in iLAND project on the basis of the simple model presented in 

the current paper. QoS characterization has been achieved both at service and application levels. Application-level QoS 
parameters describe the end-to-end expected behavior, whereas service-level QoS parameters describe the local characteristics 
of specific services. Application-level QoS parameters directly influence the service implementations that will be elected to 
run.  

 
A. Service-level characterization 

 
Services can be connected in an application graph; therefore, they must explicitly provide connection hooks or ports to 

interact with other services of the application. Following, the characterization of a generic service is given.  
 
Service template Service_Gen(functionality: string){ 

Description = functionality; 

Input_interface = input_port_1; 

Output_interface = output_port_1; 

Sid: generate_unique_id(functionality); 

} 

The definition of a service contains a description of the specific functionality it provides; that is the primary search key to 
find a service. Each service also contains a unique identifier in the system. Moreover, to interact with other services, it must 
specify its input and output interfaces named Input_interface and Output_interface. Data and event exchange is 
carried out through these ports. These elements describe the functionality that the service provides to (and requires from) the 
outside world, or to other services, must be also part of its definition: 
• Required or input interface integrates the set of expected input data, events, and information as well as the operations 

provided by the service. Such operations receive data or parameters to process them for generating a result. Results will be 
sent to other services via the output interface. Other services can use the required interface for communication with this 
service in a push mode. 

• Provided or output interface includes the results generated by the service. These data will be the incoming information for 
other services. Composition algorithms will make use of such interface to determine compatibility information indicating 
whether the service can be composed with others. Also, other services will issue communication requests to it through this 
interface. 
 

Following, the description of a service implementation is 
given.ServiceImpl template IM_Gen(im_id: Id, sid: Id, 

qos_p: Resources, node: Localization, code: Function ){ 

Id: im_id; 

Sid: sid; 

Qos_Params: qos_p; 

Localization: node_id; 

Function: code; 

} 
 
Each service implementation is a particular realization of a service. Since it is an active entity that executes the functionality 

of the service, it requires to consume computational resources. The information regarding its resource needs is important for 
the composition algorithms; schedulability analysis is part of the composition algorithms to determine a feasible execution set.  

 
 

B. Application-level characterization 
 
Application requirements are end-to-end properties of the service graph. An application (as shown in figure 3) is, therefore, 

characterized in the following way: 
 

Application template App_Graph(){ 

Description = functionality; 

ServiceSet = service_list; 

QoS_Params = qos_p; 

Aid: generate_unique_id(functionality); 

} 

 
 
The QoS_Params contain the information related to the characteristics of the global functionality of the application. They 

characterize the data flow through the whole application and model its end-to-end requirements. These information include the 
characterization of the data that the application processes and lower-level values related to requirements for physical resources 
that are the needs for computational resources (i.e., processor cycles, memory, battery, network bandwidth, etc.). The 
ServiceSet attribute contains the list of graphs that the system requires to manage the execution of applications. As 
explained above, each application i has an AGi (application graph) that contains only the service structure, an XGi (expanded 
graph) generated by the composition algorithm, and the selected EG (execution graph) wich is the set of service 
implementations that are running.  

 

 



Fig. 8. Application data channel flows through services'data channels 
 
If the application defines that its input data is of type dx and its output data of type dy, this requirement influences directly the 

input and output data parameterization of the elected services and service implementations. Therefore, it is easily observable 
that EGi = f(Qi) meaning that the selection of the running services depends or is a function of the application level QoS 
parameters (Q), where Qiis the set of characterizing QoS parameters of application i, i.e., the end-to-end parameters of the 
whole application data flow as shown in figure 8. Conversely, Q must be compatible with the QoS parameters of the specific 
service implementations of EGi that are indicated by qs1, qs2, and qs3 in the specific example of figure 8. 

 
C. Identifying the bi-dimensional aspect of QoS properties in real-time SOAs 

 
One of the main contributions of the iLAND model is that both at the level of applications and service implementations, QoS 

characterization has two dimensions. Applications and service implementations have requirements for: (1) physical resources 
that provide the computational means and (2) requirements of the processed data.  

It is then considered that services receive two types of information through the required interface related to the data that the 
application processes it. On one side, data qos that relate to the characteristics of the functional information handled by the 
application. For example, an audio service will receive audio samples that is part of the functional description of the service. 
Also, it will receive information on the QoS of the audio samples since the quality of the processed data depends, in this case, 
on the bits/sample, noise-related information, and even the required computation resources (as processor and memory needs). 
This second part are the data QoS parameters. Access ports of figure 9 present this idea in which a generic service component 
receives both types of information that is combined inside the service; also, the relation to an audio service is shown. 

 
     

 

 

Figure 9. Relation of QoS parameters for describing data and physical resources 
 
The proposed charaterization provides a bi-dimensional QoS specification model  identifying two types of QoS properties, 

those related to the application data (data-related) and those related to the required computational resources (physical-
resources QoS information). The nature of the processed data imposes non functional restrictions on real-time applications that 
have an immediate translation to requirements for computational resources. Since the audio service of figure 9 requires to 
processes 20 samples/s., it has an output deadline of 50 ms. This translates to a specific processor usage requirement 
periodically, i.e, every 50 ms the audio service has to execute for a given amount of time. 

This concept is implemented in service implementations since their model inherits the ports of services; service 
implementations have input and output ports to propagate their information of QoS for both dimensions as shown below (input 
and output ports are of type QoS_Port): 

 
QoS_Port template QInOutPort(q_data: QoS_AppData, q_phys: 

QoS_PhysResources){ 

QoS_Data: q_data; 

QoS_PhysResources: q_phys; 

} 
 
This provides a unified interface that integrates the information received and output by a service component. Data delivered 

by a service may be the input to another service in the application chain of services. Such information is provided together with 
the QoS parameters that define it in an integrated way. This is an enabling mechanism for propagating the quality of service 
parameters along the application chain, so that especially data dependencies can be accounted for. 

 

D. Relating Application and Service Implementation QoS parameters 
 
QoS information must be specified also for applications. Therefore,  service parameters and application parameters have a 

direct relationship that is shown in figure 10. Application QoS parameters are enforced for all the application service graph. To 

execute an application, the system will select a set of service implementations in such a way that the application-level QoS 
parameters are fulfilled.  

 
 

Fig. 10. QoS info (Q) is contained in both applications (ai) and service 
implementations (si,j). Q presents two dimensions: application-level data 
and information on the requirements for computational resources 
 
Application level QoS parameters are also related to the physical resources in a direct way, as presented in figure 10. The 

higher the QoS offered by the application, the more computational resources it requires. Multimedia applications are a typical 
case of this since multimedia tasks are greedy resource consumers, and the quality of the output they produce is in direct 
relation to the amount of physical resources that is assigned to them. 

Therefore, QoS parameters of an application are also split in two dimensions according to their relation to: 
• Application-level perception (Data Q): these parameters refer to the specific functionality of the application such as input 

and output data characteristics that map to the output results of the service. They have direct impact on the level of 
satisfaction of the user expectations. 

• Needs for physical resources(Phys Q); these parameters are tipically processor utilization (CPU time, period, deadline, and 
priority), memory usage, network bandwidth, or battery consumption. 
Application-level QoS related to physical resources are the following: 

• End-to-end deadline. The deadline may coincide with the end-to-end period if all tasks are modelled as a pipeline where 
incoming data enters periodically. 

• End-to-end memory. This corresponds to the total amount of main memory assigned to all application service 
implementations. 

• End-to-end battery/power. Energy management is related to the amount of CPU cycles executed and the usage of the 
network resource, especially for embedded motes in a wireless environment. 

 
Since service implementations are part of the execution graph of applications, QoS parameters of service implementations 

and applications (as shown in figures 8 through 10) exhibit dependencies. In this way, both templates, QoS_InPort and 
QoS_OutPort, are applied to both, applications and service implementations. 

 

 
Fig. 11. Bi-dimensional QoS characterisation of an example audio processing application 

 
As a result of the bi-dimensional QoS characterization of properties, the application graph describes a virtual channel that 

connects all service implementations input/required and output/provided ports (see figure 11 and 12). Data QoS properties 
flow across service implementations that have compatible input and output ports. Phys QoS properties are used by the systems 
(i.e., the middleware) to determine the feasibility or real-time schedulability of the whole application at run-time. The latter is 
done by applying an admission protocol based on schedulabitity analysis.  

 
 



Fig. 12. Application-level channels for data-related and QoS-related information. 
 
To compose a given application, the selected service implementation set must fulfill that for all services connected, their 

required data QoS (idqi,k) is compatible with the provided data QoS (odqi,k) of the preceding service implementation in the 
pipeline. This is shown in figure 13. 

 
 

Fig. 13. Connection compatibility at the time of composition. 
 
The selected set of service implementations must match: 
• Firstly, the application-level data-related parameters; only the service implementations that process the required data 

characteristics are of utility to the execution graph. For example, if a video application is to be constructed, only 
services that process video data will be selected. 

• Secondly, the limitations imposed by the application-level physical resources (end-to-end parameters) and the 
availability of resources in each node. 

The selected set of service implementations  that matches the application end-to-end data-related parameters is obtained as a 
function of the values of the application-level data parameters (DQ) represented by {idqi,k,..., idqs,k+m} = fd(DQ). There is a 
match in the service chain so that output of a service is compatible with the input of the consecutive service in the graph: idqi,k 
= odqs,k-1 , being the equality operator a relation of compatibility. This function (fd or function of the selected data types) is not 
a utility function. fd selects a specific service set that is able to process the required data requested by the application; it is an 
ontology-based function that performs cross-check of functionality tags. Once this function is applied, a set of data-compliant 
service implementations is obtained, DSI={idqi,1, ..., idqs,k}. This set defines the expanded graph of the application, XGx. 

The composition algorithms are applied to this set, DSI, to obtain the set of service implementations that adjust to the 
application-level (end-to-end) physical-related QoS. Therefore, the selected execution graph of an application, EGx, is the 
result of a function (fPR) that applies a search of service-implementations based on the resource consumption of individual 
service implementations and of the application as a whole: EGx = fPR(DSI). 

If an application end to end QoS value Dx is the global response time, then the following should be observed: Dx ≤  max(Di,j), 
where Di,j  is the deadline of the service implementation that is in the final position in the application pipeline graph, si,j.  
Figures 13 and 14 illustrate the relation between the QoS parameters of applications and service implementations.  

 

 
Fig.14. Physical QoS parameter (Di,j) for a service implementation Si,j 

 

 
Fig. 15. Physical QoS parameter (Dx) for an application ax 

 
Response time analysis can be applied to the whole service implementation graph to obtain a feasible set of service 

implementations. Because service implementations execute concurrently with others, this model should be extended  to include 
response-time values such that Rx ≤ ∑ Ri,j for all si,j of the application ax.  Rx is the response time of the whole application 
output and Ri,j is the response time of service implementations. 

 
 
 
The physical QoS parameters are defined below as the requirements for computational resources: 

 

QoS_PhysResources template QoS_R(c: time, t: time, d: 

time, p: priority, bat: battery, n: network_bw){ 

cpu_t = c; 

period = t; 

deadline = d; 

priority = p; 

power = bat; 

n = network(transm_c, transm_t); 

} 
 

QoS parameters related to the requirements for physical resources encompass the different resources of a given hardware 
computation device including the network. The network bandwidth is the consumed percentage that the transmission requires. 

The specification of a service component must include a separation between the two QoS dimensions. Following, QoS 
parameters related to the nature of the application data are described: 

 
QoS_Data template QoS_D(){ 

   QoSData = data_q_set; 

} 

 
Data-related QoS parameters are completely dependent on the application nature and the characteristics of the data it 

processes. For instance, in a multimedia application, data QoS will comprise attributes as: resolution, bit-rate, and image size, 
among others, and in an audio application the exemplification of this two dimensions has been put forward in figure 11 

 
 
 
QoS parameters are common for applications and services. The composition algorithm is the entity that considers their 

values to obtain the appropriate selection of service implementations in such a way that the combination of QoS parameters of 
service implementations do not conflict with the accomplishment of application-level QoS requirements. 

 
The provided bi-dimensional characterization of the QoS properties for real-time SOA based applications is a simple model 

that has been integrated in the iLAND middleware. iLAND provides a modular architecture based on the concept of extended 
schedulability guarantees born in [4], later elaborated for services in [9] and finally implemented for real-time distributed 
domains in [26] following a real-time reconfiguration model and scheme. 

The overview and utility of iLAND is scketched in figure 14. The main functionality of iLAND is enumerated in it, and it 
consists of providing an execution infrastructure for enabling QoS-based execution of services that require to communicate and 
execute preserving their specific temporal requirements; the most novel part of iLAND consists of the built in logic for 
detecting reconfiguration events and managing the reconfiguration of applications in real-time. Figure 14 shows the execution 
in different nodes. Temporal schedulability of distributed systems is integrated in the middleware to deliver guaranteed service 
execution. 

 

 
 

Fig. 14. Overview of the functionality of iLAND middleware 
 
Figure 15 presents the specific integration of the QoS characterization model with iLAND. 



 

 
 

Fig. 15. Interaction of iLAND logic with the bi-dimensional QoS model 
 
The operation of iLAND middleware refers constantly to the QoS model of the systems, since the execution of services and 

applications requires to be time-bounded. The model of the system indicates the number of services, service implementations, 
and all their required properties. Initially, the QoS model is stored in the internal middleware database. It is from there on used 
for all operations concerning detection of reconfiguration triggers, configuration of a new applications (i.e. selection of a new 
service implementation set), and enforcement of the real-time properties of all operations. 

 

V. MODEL-BASED APPLICATION OF THE BI-DIMENDIONAL QOS MODEL 

The characterization of distributed and reconfigurable applications that exhibit a growing complexity is currently changing 
from code centric to a model centric approach, as they can benefit from meta-modeling techniques. A model centric approach 
relies on the use of models to represent the domain elements and their relationships. These models act as the input and the 
output at all stages of the development cycle until the final system is itself generated [33].  

This section presents an ontological meta-model for iLAND applications, taking into account that it must capture all the 
information needed to run the application under the control of the iLAND middleware. The elements commented in the 
previous sections, their characterization in terms of QoS attributes and their relationships can be expressed as a meta-model. 
Fig 16 illustrates the proposed meta-model using a UML class diagram. 

 
Fig. 16:QoS Bi-dimensional meta-model for iLAND service oriented applications 
 
A Service oriented applications (SOA) as understood in iLAND, is characterized by an identifier (aId). Its functional 

requirements are expressed as a service graph (AG), that has to be registered in the middleware using the API. Services are 

characterized by the provided and required interfaces, that group a set of parameters. A parameter is characterized by the name, 
type and order properties. The logic of the application expressing the functional requirements is modeled in terms of data QoS 
(QoS_D) element characterized by the previous (precedent service) and next (subsequent service) properties. As illustrated in 
Fig.16, the value of those properties is a service’s identifier. Hence, an initial service cannot have the previous property as it 
does not have a precedent service and a final service cannot have the next property as it does not have a subsequent service. 
The Qos Physical parameters mentioned above are grouped in Qos_R element, which can be characterized by end-to-end 
period (T), end-to-end deadline (D), end-to-end Memory and Battery properties. 

The eXpanded Graph (XG) must consider the set of service implementations corresponding to every service participating in 
the SOA application graph. Every service implementation is characterized by and identifier (im_id), the id of the service it 
implements as well as the node where it is deployed. As commented above, the functional QoS parameters are very related to 
the application field. Thus, a couple of generic properties (name and value) have been defined. These properties have to be 
defined for the application field. Finally, the physical QoS parameters associated to service implementations, QoS:R, are 
characterized as a set of properties: computation time (C), period (T), deadline (D), Priority (P), battery (bat) and network 
bandwidth (network_BW) . 

 
 

VI. VALIDATION 

 
The validation of the QoS model has been carried out on a simple scale video surveillance application for remote monitoring 

of industrial processes, implemented and deployed in a distributed environment [26]. In particular the demonstrator consists of 
a full-HD video application delivering a frame rate of 25 frames per second. The application graph is composed by three 
services: (1) video capture, that manages the camera to obtain an image every 40ms; (2) video compression whose 
computational time should not be greater than 40ms, in order to assure that there is no loss of images; and (3) video display 
which displays images on the screen that must have the same maximum computational time. This system generates alarms 
simulating that the monitoring parameters of the physical process has to be changed e.g. connection/disconnection of camera 
devices or change of image compression formats. 

The following table details the characterization of the three application services, following the meta-model presented in the 
previous section: 

 
Table 1: Services of video surveillance application 
 Video capture Video compression Video display 
sid Camera Compression Display  
Required interface ---- IplImage Image IplImage CompressedImage 
Provided interface IplImage Image IplImage CompressedImage ---- 

 
Regarding the QoS parameters of the whole application, they are listed in Table 2. Two QoS Data defines the logic of the 

application. Services that do not appear in a next field are considered as initial services. In the same way, services that do not 
appear in a previous field correspond to final services. The second QoS parameter, related to the computational resources 
needed to execute the application, is formed by two parameters: end-to-end period (40ms) and end-to-end deadline (120ms).  

 
Table 2: QoS Parameters for Video surveillance application 
 Video surveillance application’s QoS  

1 Previous= Camera; next= Compression Qos Data 
2 Previous= Compression; next= Display 

 T=40ms Qos Resources 
 D=120ms 

 
Each service of the application may have a set of different service implementations deployed in the nodes of the system. In 

this case, it is assumed that the following ones have been registered:  
As the platform is composed by two cameras Guppy F-080C and GX1050C Proxilica, there are two service 

implementations, one for each, having both different resource requirements, as illustrated in Table 3. Again, it shows the 
characterization of both service implementations following the proposed meta-model. Concerning QoS Data parameters, vision 
applications must consider at least two QoS data: resolution and frames per second. Physical QoS parameters are: period, 
deadline and computation time. As GX1050 works with higher resolution than Guppy a higher computation time is derived. 

  



Table 3: Service implementation for Camera  
 Guppy F-80C GX1050 Proxilica 
im_id Guppy GX1050 
sid Camera Camera 
node Node_1 Node_2 

name= resolution value= 640x480 name: resolution: value:1024x1024 QoS Data 
name=fps value=25 name=fps value=25 
T=40ms T=40ms 
D=40ms D=40ms Qos Resources 
C=20ms C=40ms 

 
On the other hand, two service implementations for the Compression service have been defined. Compressed files are 

significantly smaller than their uncompressed counterparts, and they fall into two general categories: "lossy" and "lossless." 
Lossless compression ensures that the complete image information is preserved. Lossy compression, by contrast, can create 
file sizes that are significantly smaller, but achieves this by selectively discarding image data. In concrete, TIFF compression 
service implementation has been developed as lossless compression and JPG service implementation as lossy compression. 
The QoS data of such service implementation is the compression algorithm: LZW and JPG respectively. These service 
implementations have the same QoS physical parameters as  the Camera’s service implementations. 

 

VII. CONCLUSIONS  

 
This paper has presented the characterization of applications based on services specifically concerning their QoS properties. 

In real-time service based applications it is important to capture both the functional dimension as well as the execution 
dimension; at run-time, the first one is influenced by the latter one. Based on previous works on the iLAND project where a 
component model for homogeneous service programming was introduced, this work has enhanced the description with a 
presentation of the bi-dimensional aspect of the QoS properties relating application-level properties to the service 
implementation ones. Moreover, the integration of the bi-dimensional QoS model with the iLAND middleware has been 
presented. A model based design of a representative use case has been elaborated to validate the easy of use and application of 
the model in a real sample scenario that has been proposed for iLAND,  where physical resource mappings are observed and 
enforced in the underlying execution platform based on the provided system model. 
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